Operations with sets – Union, Intersection and Complement

A **universal set** for a particular problem is a set which contains all the elements of all the sets in the problem.

A universal set is often denoted by a capital U, but sometimes the Greek letter ξ (xee) is used.

In this section we will create subsets of a given universal set and use set operations to create new subsets of the universal set.

There are three set operations we will learn in this section.

- **Complement:** The complement of a set A is symbolized by A' and it is the set of all elements in the universal set that are not in A.
- Intersection: The intersection of sets A and B is symbolized by $A \cap B$ and is the set containing all of the elements that are common to both set A and set B.
- **Union:** The union of set A and B is symbolized $A \cup B$ and is the set containing all the elements that are elements of set A or of set B or that are in both Sets A and B.

Here is a quick example to illustrate the 3 definitions.

Example: Let U be a universal set and A and B be subsets of U defined as follows.

 $U = \{1,2,3,4,5\}$

 $A = \{1,2,3\}$

 $B = \{2,3,4\}$

Find A'

A' is all of the elements in the Universal set that are not in set A.

Answer: $A' = \{4,5\}$

Find $A \cap B$ (This is asking me to find all of the elements that A and B have in common.)

Answer: $A \cap B = \{2,3\}$

Find $A \cup B$ (This is asking me to list all of the elements in A followed by all of the elements in B, then delete any elements that are written twice.)

 $A \cup B = \{1,2,3,2,3,4\}$

Answer: $A \cup B = \{1,2,3,4\}$

Example: Let U be a universal set and A and B be subsets of U defined as follows.

$$U = \{a,b,c,d,e,f\}$$

$$A = \{a,b,c\}$$

$$B = \{c,d,e\}$$

Find $A' \cap B$

First I need to find A', which is all of the elements in U that aren't in set A.

$$A' = \{d,e,f\}$$

Now I can intersect the two sets.

$$A' \cap B = \{d,e,f\} \cap \{c,d,e\}$$
 (now find what the two sets have in common)

Find $A \cup B'$

First I need to find B'

$$B' = \{a,b,f\}$$

 $A \cup B' = \{a,b,c\} \cup \{a,b,f\}$ (put all 6 elements in a big set then delete the duplicates)

#1-10: Find the following sets.

$$U = \{a,b,c,d,e\}$$
 $A = \{c,d,e\}$ $B = \{a,c,d\}$

1) A'

2) B'

3) $A \cup B$

4) $A' \cup B'$

5) $A \cap B$

6) $A' \cap B'$

7) $A' \cap B$

8) $A \cap B'$

9) $A' \cup B$

10) $A \cup B'$

#11-20: Find the following sets.

$$U = \{1,2,3,4,5\}$$
 $A = \{1,2,3\}$ $B = \{5\}$

11) A'

12) B'

13) $A \cup B$

14) $A' \cup B'$

15) $A \cap B$

16) $A' \cap B'$

17) $A' \cap B$

18) $A \cap B'$

19) $A' \cup B$

20) $A \cup B'$

Example: Let U be a universal set and A, B and C be subsets of U defined as follows.

$$U = \{a,b,c,d,e,f\}$$

$$A = \{a,b,c\}$$

$$B = \{c,d,e\}$$

$$C = \{d,e,f\}$$

Find
$$A \cup B \cup C$$

I need to work from left to right. First I will find $A \cup B$

$$A \cup B = \{a,b,c\} \cup \{c,d,e\}$$

Now I can do the union C part. I can rewrite my problem as:

$$\{a,b,c,d,e\} \cup C$$

Answer: {a,b,c,d,e,f}

Find $(B \cup C)'$

I have to work on the inside of the parenthesis first.

So I will first find:

 $B \cup C$

 $B \cup C = \{c,d,e\} \cup \{d,e,f\}$

 $B \cup C = \{c,d,e,d,e,f\}$

 $B \cup C = \{c,d,e,f\}$

Now I can do the complement.

I can replace the inside of the parenthesis with {c,d,e,f} and proceed to find its complement.

 $(B \cup C)' = (c,d,e,f)'$ (my answer will be all the elements of set U that are not in this set.)

Answer: {a,b}

Find $A \cup (B \cup C)'$

First I need to simplify the parenthesis $(B \cup C)'$ I just figured out that $(B \cup C)' = \{a,b\}$, so I will use the work I have already done

 $A \cup (B \cup C)'$

 $= A \cup \{a, b\}$

 $= \{a,b,c\} \cup \{a,b\}$

= {a,b,c,a,b}

Answer: {a,b,c}

Find $A' \cap (B \cap C')$

I need to simplify the inside of the parenthesis first.

 $(B \cap C')$

$$= \{c,d,e\} \cap \{a,b,c\}$$

 $= \{c\}$

$$A' \cap (B \cap C')$$

 $=\mathsf{A}'\cap\{c\}$

$$= \{d,e,f\} \cap \{c\}$$

Answer: Ø (empty set)

#21-32: Find the following sets.

$$U = \{1,2,3,4,5,6\}$$
 $A = \{1,2,3\}$ $B = \{2,3,4\}$ $C = \{1,5\}$

21) *A* ∩ *C*

22) $B \cap C$

23) *A* ∪ *C*

- 24) $B \cup C$
- 25) $A \cap B \cup C$
- 26) $A \cup B \cap C$
- 27) $B \cup C \cap A$
- 28) $B \cap A \cup C$

29) $A' \cap B$

- 30) $A \cap B'$
- 31) $A' \cup B \cap C'$
- 32) $B' \cap A \cup C'$

#33-44: Find the following sets.

$$U = \{a,b,c,d\}$$
 $A = \{a,b,c\}$ $B = \{b,c,d\}$ $C = \{a,d\}$

33) $A \cap C'$

34) $B' \cap C$

35) $A' \cup C'$

- 36) $B' \cup C'$
- 37) $A' \cap B \cup C'$
- 38) $A' \cup B' \cap C$
- 39) $B' \cup C' \cap A$
- 40) $B' \cap A' \cup C$

41) $A' \cap B'$

- 42) $A \cap B'$
- 43) $A' \cup B' \cap C'$
- 44) $B \cap A' \cup C'$

#45 - 56: Find the following sets.

 $U = \{1,2,3,4,5,6\}$ $S = \{2,4,6\}$ $T = \{1,2,4\}$ $V = \{4,5,6\}$

45) $S \cup (T \cap V)$

46) $(S \cup T) \cap V$

47) $(S \cup T)'$ 48) $(V \cup S)'$

49) $S \cap (V \cap T')$

50) $(S' \cap V') \cup T$

51) $(S' \cup V') \cap T$ 52) $S' \cup T \cap V'$

53) $T \cup V' \cup S'$ 54) $T \cup V' \cap S'$

55) $(V \cap T)' \cup S$ 56) $V \cup (S \cap T)'$